大型医用设备上岗证CT技师考点及解析三
2017-1-16 来源:本站原创 浏览次数:次更多考点及解析请下载放射沙龙APP进行查看!
X线信息影像的形成与传递XZC1.摄影的基本概念
摄影:是应用光或其他能量来表现被照体信息状态,并以可见光学影像加以记录的一种技术。
像:是用能量或物性量,把被照体信息表现出来的图案。在此把能量或物性量,称作信息载体。
信息信号:由载体表现出来的单位信息量。
成像系统:将载体表现出来的信息、信号加以配列,就形成了表现信息的影像。此配列称为成像系统。
摄影程序:光或能量→信号→检测→图像形成。
2.X线信息影像的形成与传递
X线在到达被照体之前不具有任何的医学信号,只有当X线透过被照体(三维空间分布)时,受到被照体各组织的吸收和散射而衰减,使透过后的X线强度分布呈现差异,从而形成X线的信息影像。X线随之到达影像接收器(如屏/片系统)的受光面,转换成可见光强度的分布,并传递给胶片,形成银颗粒的空间分布,再经显影处理成为二维光学密度分布,形成光密度X线照片影像。
如果把被照体作为信息源,X线作为信息载体,那么X线诊断的过程就是一个信息传递与转换的过程。此过程分为五个阶段(图1-2-1)。
第一阶段:X线对三维空间的被照体进行照射,取得载有被照体信息成分的强度不均匀分布。此阶段信息形成的质与量,取决于被照体因素(原子序数、密度、厚度)和射线因素(线质、线量、散射线)等。
第二阶段:将不均匀的X线强度分布,通过接受介质(屏/片系统Ⅱ、CR、DR系统等)转换为二维的光强度分布。若以屏/片系统作为接受介质,那么这个荧光强度分布传递给胶片形成银颗粒的分布(潜影形成),再经显影加工处理成为二维光学密度的分布。此阶段的信息传递转换功能取决于荧光体特性、胶片特性及显影加工条件。此阶段是把不可见的X线信息影像转换成可见密度影像的中心环节。
第三阶段:借助看片灯(或显示器),将密度分布转换成可见光的空间分布,然后投影到人的视网膜。此阶段信息的质量取决于看片灯(或显示器)亮度、色光、观察环境以及视力。
第四阶段:通过视网膜上明暗相间的图案,形成视觉的影像。
第五阶段:最后通过识别、判断做出评价或诊断。此阶段信息传递取决于医师的学历、知识、经验、记忆和鉴别能力。
我们之所以介绍“X线影像信息的形成与传递”的目的,是要了解X线影像形成中每一个阶段的要素以及建立一个“影像链”的概念。
X线摄影目的,就是掌握和控制X线影像形成的条件,准确大量地从被照体中取得有用的信息。并真实地转换成可见影像。或者说,在允许的辐射剂量内,获得最有效的影像信息,其中有两个关键,一是当X线通过被照体时,究竟以多大程度把客观的信息准确地传递出来;二是从信息接受介质来讲,又以何种程度把信息真实地再现成可见影像。前者取决于X线机的性能、X线的特性及摄影条件的选择;后者取决于接受介质的转换功能及显影加工技术。这些也正是推行影像质量保证(QA)与质量控制(QC)的目的。
3.X线照片影像的形成
作为放射诊断影像的主体——X线照片影像,仍占影像检查总数的70%。年美国放射学院(ACR)一项调研表明,家被调研的临床机构中,有48%认为常规X线摄影是最适宜首选的诊断方法。
所谓X线照片影像,就是以增感屏/胶片体系作为信息的接受介质,而形成的X线影像。X线透过被照体时,由于被照体的吸收、散射而衰减,透射线仍按原方向直地(散射线不形成影像),作用于屏/片系统,经显影加工后,则形成了密度不等的X线照片影像(图1-2-2)。
X线照片影像的形成,一是利用了X线具有的穿透、荧光、感光等特性,以及被照体对X线吸收差异的存在。所以,X线照片影像可以看作是X线通过被照体内部所产生的吸收现象的记录。
X线照片影像是X线诊断的依据,医生通过对照片的观察,对构成这幅影像的点、线赋予一定的内容,并理解其中的含义,这就是诊断。对此重要的是,什么样的点和线可以在X线照片上显示出来,并能为人眼所识别,这也就是医生最关心的影像细节的微小变化。因为,它是疾病早期诊断的征象。X线照片影像的质量实质上指的就是微小细节的信息传递问题,即影像的清晰度。
概括地讲,影像细节的表现主要取决于构成照片影像的五大要素:密度、对比度、锐利度、颗粒度及失真度。前四者为构成照片影像的物理因素,后者为构成照片影像的几何因素。
自测题-35X线信息影像形成的阶段是()
A.X线透过被照体之后
B.X线照片冲洗之后
C.X线到达被照体之前
D.视觉影像就是X线信息影像
E.在大脑判断之后
答:A
自测题-36关于X线信息影像的形成与传递过程的叙述,错误的是()
A.自X线管发射出来的X线强度分布是不均匀的
B.X线透过被照体之后就已形成了X线信息影像
C.被照体是信息源,X线是信息载体
D.不均匀分布的X线强度照射到屏/片体系,经显影加工后形成光学密度影像
E.照片密度影像通过看片灯,在视网膜形成视觉影像,再经大脑判断,最后形成诊断
答:A
自测题-37X线透过被照体之后形成的X线强度的差异称为()
A.人工对比
B.天然对比
C.射线对比度
D.胶片对比度
E.照片对比度
答:C
自测题-38关于X线照片影像形成的叙述,错误的是()
A.X线透过被照体之后的透射线和散射线,照射到胶片上形成照片影像
B.X线照片影像是X线被被照体吸收与散射后形成的
C.X线照片影像是利用了X线透射线的直进性
D.照片接受的散射线不形成影像
E.常规X线照片与CT片的影像均利用了X线的穿透性
答:A
自测题-39X线照片影像的形成要素,不包括()
A.照片密度
B.照片的感度
C.照片的对比度
D.照片的锐利度
E.照片的放大与变形
答:B
自测题-40X线照片影像的质量实质上指的是()
A.影像密度
B.影像对比度
C.影像清晰度
D.影像失真度
E.胶片感光度
答:C
自测题-41X线照片上微小细节的信息传递问题,就是()
A.影像密度
B.天然对比度
C.影像失真度
D.影像清晰度
E.胶片感光度
答:D
自测题-42下列哪项是构成X线照片影像的几何因素()
A.影像密度
B.影像对比度
C.影像锐利度
D.影像颗粒度
E.影像失真度
答:E
X线照片影像质量的分析基础
1.影响影像质量的基本因素
(1)X线影像质量的评价
X线影像质量的评价经历了一个逐渐完善的过程,从主观评价到客观评价,目前又进入了一个新的领域——综合评价阶段。
①主观评价:通过人的视觉在检出识别过程中根据心理学规律,以心理学水平进行的评价,称为主观评价或视觉评价。以往,主观评价方法主要有金属网法、Burger法、并列细线法等。目前,主要应用ROC(receiveroperatingcharacteristic,ROC)曲线,它是一种以信号检出概率方式,对成像系统在背景噪声中微小信号的检出能力进行解析与评价的方法,也称观测者操作特性曲线。这一概念是对主观评价的最新发展。
②客观评价:对导致x线照片影像形成的密度、模糊度、对比度、颗粒度以及信息传递功能,以物理量水平进行的评价,称为客观评价。主要通过特性曲线、响应函数等方法予以测定、评价。
③综合评价:它是以诊断学要求为依据,以物理参数为客观手段,再以能满足诊断要求的技术条件为保证,同时充分考虑减少辐射量的评价方法。
无论是主观评价、客观评价还是综合评价,其评价的前提是必须了解影响影像质量的基本因素。
(2)影响X线影像质量的基本因素
从医疗角度讲,评价影像质量的第一要素,是看影像质量是否符合诊断学要求。在这里我们仅从技术角度对影像质量加以分析。
X线照片影像,从X线的发生到在胶片上形成一幅固定的影像,其间要发生许多改变,这是一个复杂的信息形成与传递的过程。因此,一幅照片影像的质量的评价、分析与控制应当是全过程的、全面的、全员的,即全面质量管理(totalqualitymanagement,TQM)的模式,也就是说,要提高一幅照片影像的质量,必须对所包含的每个步骤、过程加以测试、评估方可得到改善。
在上述影响影像质量的诸多因素中,最重要的影响因素是对比度、清晰度和颗粒度三大因素。这三大因素存在着相关性,相互之间又存在着许多方式的影响。但是,从总体来看也存在着随机的相关性。据此,这些因素也可以认为具有一定的独立性。
(3)X线影像质量的视觉评价
当人们用肉眼对X线照片影像质量进行评价时,很难对上述三大因素做出十分清楚的区分,所看到的影像是三个因素相互作用的结果。因此,人们要对照片影像进行更加科学的分析、评价,这就需要有使用物理参量的对“总体影像质量”或“诊断价值”进行表达的一些方式。
目前对此评价的最新视觉评价方法是借助统计学的ROC曲线。
当所有三大因素完全满意、完全不满意、一种因素相对于另外两种因素具有悬殊很大的影响时,对总体的影像质量评价会十分容易。但是,实际上有些照片显示出高清晰度,而颗粒性差的影像;也可以是低清晰度,而有良好的颗粒性影像。此外,照片影像质量的评价还受其他因素的影响,如医生的“偏爱”和所检查器官、组织的类型等。总之,有一条基本的结论,目前还没有制定出一个具有概括性的结论和方法。结果,对肉眼观察与物理参量之间还没有建立一个完全的统一。这也是为什么“综合评价”观点出现的原因。然而,在当前以数学方式表达影像质量的应用方法,即客观评价方法,毫无疑问地说它可以提供影像质量提高的有价值数据。
2.对比度
(1)对比度的概念
X线摄影学中对比度的概念十分重要,它是形成X线照片影像的基础。这中间涉及了三个基本概念,即射线对比度、胶片对比度、X线照片对比度。
①射线对比度:X线到达被照体之前不具有任何的医学信号,它是强度分布均匀的一束射线。当X线透过被照体时,由于被照体对X线的吸收、散射而衰减,透射线则形成了强度的不均匀分布,这种强度的差异称为射线对比度。此时即形成了X线信息影像。
②胶片对比度:射线对比度所表示的X线信息影像不能为肉眼所识别,只有通过某种介质的转换才能形成可见的影像,如X线照片影像。那么,X线胶片对射线对比度的放大能力,即称为胶片对比度。它取决于胶片的最大斜率(γ值)或平均斜率(C)。
③X线照片对比度:X线照片上相邻组织影像的密度差,称为照片对比度。照片对比度依存于被照体不同组织吸收所产生的射线对比度,以及胶片对射线对比度的放大结果。
(2)影响影像对比度的因素
X线影像形成的实质,是被照体对X线的吸收差异。而X线照片影像形成的物理因素为密度、对比度、锐利度、颗粒度。其几何因素为失真度(影像的放大与变形)。所有这些因素的基础是密度的存在,而对比度是密度影像形成的根本。
图1-2-3表示了在X线照片影像形成过程中,其对比度的影响因素。胶片对比度在更大范围内影响着影像质量的评价,同时胶片对比度也与影像锐利度和宽容度(信息量)有关。当胶片对比度大时,组织影像之间的密度分辨就容易,边缘也就趋向锐利;当胶片对比度小时,密度的区分范围就大,涵盖的信息量也就越大。图1-2-4表明,密度的差别在高对比度胶片A中容易识别到。但是,在可分辨密度范围上与胶片B相比,则比较窄。据此,影像质量的评价会随特性曲线密度范围的选择变化而变化。
3.清晰度
从摄影学意义上讲,清晰度是在不同密度区域内线对的分辨能力,以及胶片重建组织影像细节的能力。
(1)影响影像清晰度的因素
图1-2-5反映出了影像分辨能力的高低,涉及了从X线设备、X线胶片的成像到观片者的心理等诸多因素。在这些因素中,对照片影像清晰度产生较大影响的是增感屏清晰度和胶片对比度。
图1-2-5所涉及的因素中任何一个的变化都会使清晰度受损。例如,当光线进入胶片乳剂层时会受到卤化银晶体颗粒的散射,此称散射(irradiation),见图1-2-6。当光线穿过片基反射,而又一次进入到乳剂层时,此称光晕(halation),又如荧光交迭效应等。所有这些因素都会使影像清晰度下降。因此,入射光的信息形态与透射光影像形态有很大的差异。如果X线信息影像(输入信息)与照片影像在形态、大小上完全相同,分辨力没有损失的话,那么信息记录与传递就是%。然而,这在实际上是不可能的,任何一种成像系统必然在信息的转换、传递中损失一部分,而信息损失的多少就涉及到了影像的清晰度。
(2)分辨力与清晰度的关系
分辨力与清晰度是两个不同的概念。分辨力也称解像力,虽然能表示某一个介质还原被照体细部的能力。但是,它是一个极限值,不能反映全部情况。事实上分辨力主要在高空间频率(高频部分)与清晰度有相应的关系,而在低频部分分辨力与清晰度不一定统一。在正常的观察条件下,肉眼一般能看到对应于2~4LP/mm之间的结构。因此,对于一般X线摄影来说,要求低频部分有更高的信息传递能力,以此对诊断有更大的价值。当我们需要采用放大摄影把高频信息变为低频来加以记录时,我们希望在高频部分有更高的信息传递能力。
(3)信息量在增感屏传递中的损失
从图1-2-7荧光照射(使用增感屏)与X线直接照射(无屏)下的MTF测定中看到,尽管空间频率在加大,不使用增感屏的胶片的信息传递几乎没有损失。然而,一旦使用了增感屏,MTF曲线有大幅度地跌落。乳腺X线摄影的屏/片组合与常规X线摄影屏/片组合的MTF曲线相比,在同一个空间频率下,乳腺摄影屏/片组合的MTF远远高于常规摄影。且乳腺摄影屏/片组合的极限分辨力可达15~20Lp/mm。
从中我们得到了一个重要的启示,屏/片系统信息传递的损失,在于增感屏的使用对影像清晰度的影响,信息是损失在增感屏的散射与交迭效应上。因此,提高屏/片系统信息传递功能的关键是增感屏MTF的提高,这一结论对生产厂家有指导意义。
直接曝光(directexposure),不使用增感屏的胶片信息传递几乎是%,它的分辨力最高可达35LP/mm以上。
Min-R乳腺摄影专用中速单面增感屏与乳腺摄影专用胶片Min-R组合下的一组MTF的信息传递功能次之;
Min-RFast乳腺摄影专用高速单面增感屏与乳腺摄影专用胶片Min-RT(T颗粒)一组的信息传递功能在上述四组屏/片系统中最低。
以上三组组合的不同,主要因为使用了不同感度的增感屏。增感屏速度越高,信息传递损失也越大,如此可见增感屏在信息传递中的作用。
Lanexregular稀土标准感度的双面增感屏与T颗粒TMG胶片的一组,在五组中信息传递最低,其原因是使用了前后两张增感屏,与单面增感屏相比又大有逊色,尽管它使用了T颗粒的胶片。
以上最终说明了一个结论,屏/片系统中的MTF高低的决定因素,在于所使用的增感屏。当然,在实际摄影技术中,要根据不同的摄影部位和诊断要求来选择恰当的屏/片系统的感度,以取得最大限度的信息传递,这也是为什么增感屏与胶片的生产要系列化的原因之一。
(4)清晰度的测定
在X线影像清晰度评价的测定方法中,主要应用的是分辨力和响应函数。
①分辨力定义:某种成像介质(如胶片、增感屏、IP、平板探测器等)区分两个相邻组织影像的能力,称为分辨力。分辨力决定于在感光材料上重建的平行线对影像变化的分离程度,以每毫米可以分辨出多少线对表示。确定分辨力的最直接方式是使用特定的屏/片系统来记录被照体,然后对其影像进行观察判断。然而,由于被照体复杂和经常的变化,每次记录时需要改变曝光条件,这样一来就不可能做出有价值的比较。因此,人们是利用测试卡来代替被照体,这样可使测试条件趋向一致,所得结果有较好的重复性和可比性。
图1-2-8为线对测试卡的实例。通常测试卡由许多黑白相间、且分隔宽度相同的线所组成。例如每毫米4个线对时,黑线和白线分隔的总数为8条,每一条宽度为1/8mm或μm。黑白部分的分离程度是建立在所决定的分辨力的极限基础上。也就是说分辨力指的是X线的接收、转换介质(胶片、屏/片系统、影像增强器等)的极限分辨力。从表1-2-1列出的主要转换介质的分辨力看到,胶片的分辨力远远高于增感屏。换句话说,分辨力很高的胶片一旦放到增感屏中使用时,其分辨力迅速下降。由此可见,影像清晰度在很大程度上受增感屏清晰度的影响。X线照片影像总体的分辨力,是由X线管焦点、屏/片系统、被照体等等各单元系统的分辨力的合成。
②调制传递函数(modulationtransferfunction,MTF):目前,作为屏/片系统影像质量的评价方法,主要是以调制传递函数为中心。调制传递函数作为一种表达数值的方式,已应用于通讯工程领域和光学领域。总地来讲,特定的能量形式的输入与相同形式能量输出之间的关系,可以由输入和输出响应位置之间的比较而决定。那么,调制传递函数就可以表达获得影像重建的水平。
如果将“调制传递函数”的概念应用到摄影或光学系统中的话,就必须制作出正弦波模板。对光线来说,与通讯工程学中声音频率的等价物是黑与亮的密度的重复,这些重复被指定为空间频率。亮度或光强度(振幅)仅是通过密度的改变来重复。这些变化输入后,此时随着空间频率的增加,输出值的重复响应受到的限制也在增加,尤其是在高频信息下限制更大。因此,以横坐标为空间频率,计算出光线对应于不同频率下的振幅,沿纵坐标绘制出调制传递函数曲线。纵坐标上的调制传递函数的数值表达了输入信号与输出信号的比值。故信息(灰度)从%完全的重建(记录)到0%的绝对不能重建的范围内存在。取代这种百分数的表示方法是指定%为1.0。
③相位移动:相位移动是有关响应函数的另一个因素,也必须引起重视。在我们用星型测试卡来测试X线管焦点的成像质量时发现,当X线管焦点面积大于被照体的径线或被照体放大率超过限定数值时,星卡影像就变成了图1-2-9右侧的交错影像。这在血管造影或放大摄影时,会出现引起误诊的伪解像,此即相位移动。当单独测试感光材料的响应函数时,常规的相位移动不会发生,此时的响应函数被指为MTF——调制传递函数。
④正弦波与方波间的关系:由于任何一种被照体均具有利用正弦波分布所测到的光强度的分布特性,所以从理论上讲,用正弦波测试模板测量响应函数是最合适的。然而,用于X线透射成像系统中的正弦波模板制作十分困难。为此,人们改用方波(或矩形波)测试卡来取代正弦波测试卡。
无论是来自普通摄影照片,还是X线照片,由产生影像密度的光亮度(强度)的分布波形十分复杂。然而,这些分布曲线具有多种空间频率、振幅和相位,它可以分割成多个单一的正弦波。从另一角度解释,如果空间频率、振幅和相位组合在一起,它也可以形成任何一种波形。这种数学综合和分析叫做傅里叶变换。如图1-2-10所示,多个正弦波叠加在一起,最后便形成方波。由于它们之间存在着互易的数学关系,利用此法可以进行相互转换。因此,正弦波测试卡可以由方波测试卡取代来获得同样有效的结果。
④分辨力与MTF:当调制传递函数曲线绘制出来以后,分辨力与MTF的测量实际上十分简单。图1-2-11显示,随着空间频率的提高,MTF曲线下降,最终与横坐标相交,则信息输出为0。此时的空间频率即是该成像系统的极限分辨力(如图所示15Lp/mm)。人眼不能识别MTF值0.1以下的密度差异(低于10%)。因此,对于人眼来讲,图1-2-11表示的成像系统的最终分辨力应为MTF值0.1下的空间分辨力(如图所示12Lp/mm)。
分辨力与MTF之间不一定总是统一的。实际上,影像的清晰度决定于适宜人眼辨别能力(即低空间频率)的MTF值。如图1-2-12所示,胶片A可能具有高分辩率,但在低频部分具有增强特性值的胶片B,会产生人眼所能识别的更加清晰的影像。
此外,MTF测定的优点,还在于可以测试X线成像系统中每一个单元对影像质量的影响的比率。如X线管、增感屏、X线胶片、影像增强器等等。同时,也可以简化其MTF的分析过程。假定X线管的MTF值为50%,这就意味着输入到屏/片系统之前信息已损失了50%。假定所用屏/片系统的信息传递功能(MTF)值为0.3,这就意味着相对于原有输入的信息量来说,当通过屏/片系统输出时,其MTF值为0.15(15%),也即仅有15%的信息被屏/片系统记录和传递(图1-2-13)。
4.颗粒度
当靠近照片观看时,人们会发现整幅图像是由许许多多的小的密度区域(颗粒)组成的。由于它们的组合便形成了影像。这种粗糙或砂砾状效果叫颗粒性。
(1)影响颗粒性的因素
影响影像颗粒性的因素如图1-2-14所示,其中最为重要的有四种因素:X线量子斑点(噪声);胶片卤化银颗粒的尺寸和分布;胶片对比度;增感屏荧光体尺寸和分布。
(2)斑点(噪声)
当人们用肉眼观察X线照片时,会看到一定量的颗粒,它们不是乳剂中单个银颗粒或增感屏荧光体颗粒组成,而是一些在一定区域内大量集中的不规则的颗粒。这些有颗粒聚集的区域,称做斑点(噪声)。
卤化银颗粒尺寸大约1~2μm。因此,肉眼是看不到的,除非它们的对比度十分高。人们所看到的X线照片斑点,通常被认为主要是量子斑点形成的(或称量子噪声),占整个X线照片斑点的92%。所谓量子斑点就是X线量子的统计涨落在照片上记录的反映。X线量子冲击到某种介质的受光面时,会像雨点一样激起一个随机的图案,没有任保力量可以使它们均匀地分布在这个表面上。假若X线量子数无限多,单位面积内的量子数就可以看成处处相等;若X线量子数很少,则单位面积里的量子数就会因位置不同而不同。这种量子密度的波动(涨落)遵循统计学的规律,故称之为X线量子的“统计涨落”。
5.影响影像质量因素间的相互关系
影像质量因素间的相互关系甚为复杂,它涉及着主观视觉评价与物理客观评价之间的不一致因素。
(1)清晰度与颗粒度间的相互关系
在各种照片影像的清晰度与颗粒度或颗粒性之间存在着许多复杂的关系。如果我们暂且忽略其他全部因素,仅把注意力集中在清晰度和颗粒度相互关系的评价的话,影像信息传递功能(MTF),将随颗粒尺寸的变大而下降。换句话说,影像清晰度会因影像颗粒性的提高(影粒度变小)而提高。例如,在通常情况下,增感屏使用的荧光体颗粒尺寸变小时,产生的影像清晰度会得到提高。这种关系同时也存在于胶片之中,即乳剂颗粒尺寸变小时,影像清晰度提高。然而,当使用高感度增感屏时,即使颗粒度和信息传递功能都变得很差,上述这种关系也不见得在所有情况下都出现。换句话说,当实际颗粒尺寸较大时,自然观察到的颗粒也应较大。但是,由于颗粒感度较高,虽然影像锐利度不好,有时看上去影像质量却有所改善;或者是说在这里微粒尺寸的作用不十分重要。
图1-2-16表示增感屏、胶片感度与清晰度的关系。从此图可以看出,既使胶片(这里指不加增感屏的单纯胶片的情况)感度逐渐提高,其信息传递功能(MTP)几乎无变化。然而,随着增感屏感度的增加,影像清晰度明显下降。
(2)清晰度与对比度的关系
这两个因素间的关系相对较为简单。在同样使用增感屏的情况下比较,如果胶片对比度逐渐提高,其清晰度也会提高。相反亦然,胶片对比度降低,其清晰度也下降。
(3)颗粒度与对比度的关系
当影像对比度提高时,颗粒质量下降。图1-2-17表示以显影温度为参量,给出了胶片对比度和颗粒度(RMS)的关系。如图所示,当单纯胶片状态仅受X线量子斑点的影响下(下方曲线),由于显影温度升高,影像对比度(γ值最大反差)增高,颗粒度加大,影像的颗粒性下降;图上方曲线为胶片与增感屏组合下,受到X线量子斑点和增感屏斑点的双重影响时,颗粒性下降幅度随显影温度的升高(对比度增大)而加大。
(4)高感度的屏/片系统与影像质量
增感屏荧光体和胶片乳剂都在不断地得到改进,以提高其系统的感度。从理论上讲,要获得系统的高感度,必然会在一定程度上牺牲影像的清晰度和颗粒质量。
当然,最大限度的曝光量的减少都是人们所期望的,但是,如果以牺牲影像质量为代价,那么影像也就失去了自身的价值。有幸的是,稀土增感屏由于采用了X线吸收效率比传统钨酸钙增感屏高得多的荧光体。因此,在很大程度上减少了高感度屏/片系统下影像清晰度、颗粒质量下降的制约。
现在,让我们做一组试验,将具有相同颗粒度和对比度等级的8种胶片设计成不同的感度,并测量其RMS颗粒度。从图1-2-18可以清楚地看到,当屏/片系统的相对感度达到特定值时,颗粒度开始急剧上升。而这种上升部分是由X线量子斑点构成的。因为,这8种胶片特性、增感屏特性和kV值均未变动。此时,影像颗粒性除X线量子斑点之外不受任何因素影响。
在图像工学上,常用以下等式来计算整体颗粒性:
照片影像整体颗粒性=(胶片对比度)×(X线量子斑点)×(增感屏MTF)(1)+(胶片对比度)×(增感屏斑点)(2)+(胶片颗粒性)(3)
由等式可以看出:(1)表达出的X线量子斑点因素的重要作用,以至于(2)和(3)表达出的屏斑点和胶片颗粒性的轻微提高对整体颗粒性都不会产生明显的改善。然而,X线量子斑点的反作用可以通过(1)式中胶片对比度和屏MTF等协同因素的降低而下降。换言之,可通过设计产生稍低对比度照片的胶片结构来达到预期的目的。
自测题-43关于X线影像质量的评价,错误的说法是()
A.X线影像质量的评价经历了一个逐步完善的过程
B.在检出识别过程中以心理学水平进行的评价称为视觉评价
C.主要通过特性曲线、响应函数等方法予以测定评价的方法叫主观评价
D.客观评价是以物理量水平进行的评价
E.目前X线影像质量进入综合评价阶段
答:C
自测题-44下列不属于主观评价方法的是()
A.金属网法
B.Burger法
C.并列细线法
D.ROC曲线
E.特性曲线
答:E
自测题-45下列哪项不是综合评价的内涵()
A.以诊断学要求为依据
B.以物理参数为客观手段
C.以能满足诊断要求的技术条件为保证
D.突出强调特性曲线
E.充分考虑减少辐射量
答:D
自测题-46下列关于对比度的概念错误的是()
A.穿过被照体后的X线强度差异叫做射线对比度
B.X线达到被照体之前不具有任何的医学信号
C.X线胶片对射线对比度的放大能力叫做影像对比度
D.X线照片上相邻组织影像之间的密度差称为照片对比度
E.X线照片上如果没有对比度就没有影像存在
答:C
自测题-47X线影像形成的实质是()
A.被照体对X线的吸收差异
B.影像密度
C.影像失真度
D.照片颗粒度
E.影像清晰度
答:A
自测题-48关于清晰度的叙述下列哪项是错误的()
A.清晰度是在不同密度区域内线对的分辨能力
B.清晰度是胶片重建组织影像细节的能力
C.影像清晰度的影响因素涉及X线设备、胶片成像到观片者心理诸多因素
D.对照片影像清晰度产生较小影响的是增感屏清晰度
E.对照片影像清晰度产生较大影响的是胶片对比度
答:D
自测题-49分辨力与清晰度的关系正确的是()
A.分辨力与清晰度是两个不同的概念
B.分辨力是一个极限值可以反映全部情况
C.分辨力主要在低频部分与清晰度有相应的关系
D.分辨力在高频部分与清晰度不一定统一
E.对一般X线摄影来说,希望在高频部分有更高的信息传递能力
答:A
自测题-50关于分辨力的概念错误的是()
A.某种成像介质区分两个相邻组织影像的能力
B.决定于在感光材料上重建的平行线对影像变化的分离程度
C.以每毫米内可以分辨出多少线对表示
D.在测定中常用测试卡代替被照体
E.从测试结果看,增感屏的分辨力远远高于胶片
答:E
自测题-51MTF是指()
A.胶片特性曲线
B.调制传递函数
C.分辨力测试卡
D.影像对比度
E.傅里叶变换
答:B
自测题-52调制传递函数表示()
A.输入信号与输出信号的比值
B.输出信号与输入信号的比值
C.某种成像介质区分两个相邻组织影像的能力
D.感光材料上重建的平行线对影像变化的分离程度
E.每毫米内可以分辨出多少线对
答:B
自测题-53下列哪项不是影响影像颗粒性的因素()
A.X线量子斑点(噪声)
B.胶片卤化银颗粒的尺寸和分布;
C.胶片对比度
D.胶片尺寸
E.增感屏荧光体尺寸和分布
答:D
自测题-54关于照片斑点(噪声)的说法错误的是()
A.照片肉眼能见到有颗粒聚集的区域,称做斑点(噪声)
B.卤化银颗粒尺寸大约1~2μm,肉眼是看不到的
C.X线照片斑点主要是量子斑点形成的
D.量子斑点就是X线量子的统计涨落在照片上记录的反映
E.假若X线量子数无限多,单位面积里的量子数就会因位置不同而不同
答:E
小编是靠点赞和分享吃饭哒~欢迎投稿:
qq.北京治疗白癜风去哪家白癫疯